分数与除法教案推荐8篇

时间:2025-12-07 09:48:09 分类:方案大全

通过生动的教案,教师能够将抽象概念与实际生活相结合,一份完善的教案能够确保教师在教学中保持适应性与创造力,下面是58范文网小编为您分享的分数与除法教案推荐8篇,感谢您的参阅。

分数与除法教案推荐8篇

分数与除法教案篇1

教学目标:

1、通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。

2、动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。

3、培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。

教学重点:

使学生理解算理,正确总结、应用计算法则。

教学难点:

使学生理解整数除以分数的算理。

教具准备:多媒体课件

教学过程:

一、旧知铺垫(课件出示)

1、复习整数除法的意义

(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。

(2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)

2、口算下面各题

×3 × ×

× ×6 ×

二、新知探究

(一)、教学例1

1、课件出示自学提纲:

(1)出示插图及乘法应用题,学生列式计算。

(2)学生把这道乘法应用题改编成两道除法应用题,并解答。

(3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。

2、学生自学后小组间交流

3、全班汇报:

100×3=300(克)

a、3盒水果糖重300克,每盒有多重? 300÷3=100(克)

b、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒)

×3= (千克) ÷3= (千克) ÷3=3(盒)

4、引导学生通过整数题组和分数题组的对照,小组讨论后得出:

分数除法的意义与整数除法相同,都是已知两个因数的积与其

中一个因数,求另个一个因数。都是乘法的逆运算。

(二)、巩固分数除法意义的练习:p28“做一做”

(三)、教学例2

(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的平均分成2份,并通过操作得出每份是这张纸的几分之几。

(2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。

(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。

a、 ÷2= =,每份就是2个。

b、 ÷2= × =,每份就是的。

(4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。

4、引导学生观察÷2和÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。

三、当堂测评(课件出示)

1、计算

÷3 ÷3 ÷20 ÷5 ÷10 ÷6

2、解决问题

(1)、一辆货车2小时耗油10/3升,平均每小时耗油多少升?

(2)、正方形的周长是4/5米,它的边长是多少米?

学生独立完成。

教师讲评,小组间批阅。

四、课堂总结

1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)

2、谁来把这两部分内容说一说?

教学后记

分数与除法教案篇2

教学目标:

1、知识与技能:结合具体事例,经历画线段图分析数量关系、找等量关系并用方程解答简单分数除法问题的过程。

2、过程与方法:能用方程解答"已知一个数的几分之几是多少,求这个数"的实际问题。

3、情感与态度:认识到许多分数除法问题可以借助方程来解决,能够表达解决问题的过程。

教学重点:

学会用方程解答"已知一个数的几分之几是多少,求这个数"的分数除法应用题。

教学难点:

学会用方程解答"已知一个数的几分之几是多少,求这个数"的分数除法应用题。

教学准备:

小黑板

教学过程:

一、复习

1、口算

15 x=5 34 x=6 3x=910

5x=1011 12 x=89 23 x=67

2、口答下列各题的数量关系式。

⑴某数的.35是36。

⑵全厂人数的58是210人。

⑶完成了300个,刚好是计划的14 。

⑷一个数的3倍是1225 。

3、解答:小营村全村有耕地75公顷,其中棉田占35 。小营村的棉田有多少公顷?

生练习,提问:这道题为什么用乘法计算?把谁看作单位"1"?

二、探究新知

师:请看黑板,同学们开联欢会布置会场,用的红气球占总数的49 ,一共用了多少个气球?

师:指名读题,谁能找出这道题的已知条件和所求问题。

师:题中"总数的49 "这个条件你是怎样理解的?

师:边画图边理解

师:请同学们看图说说题里的已知条件和问题。

师:观察图示,你发现数量间有怎样的相等关系。

师:你是根据什么列出等量关系的?(同桌讨论)

师:在这个等量关系中,哪个量是已知的?哪个量是未知的?

师:未知的可以设为x,根据等量关系我们可以用列方程的方法来解答,同学们自己能解答吗?(指名板演,其他自练,并提醒学生做完要检验。)

师:做完的同学把书打开72页,对照例题检查自己做对了吗?谁愿意说说你是怎样检验的?

师:同学们是用把原方程的解代入原方程看方程左右两边是否相等的方法检验的,其实还可以根据题意进行检验,我们可以计算28是不是占x的49,如果是就说明你的方程不但列对了,而且解对了。如果不是就说明有错误出现,好及时改正。

师:回顾例题的学习过程,你认为解题关键是什么?

师:同学们真聪明!自己不但能学懂知识,还能学以致用,解决实际问题。

师:其实我们今天所学的知识不光能解决有关联欢会的问题,还能解决生活中的许多实际问题,比如说"十、一假期,老师上街买了一套衣服,裤子75元,是上衣价钱的23,"应用今天所学的知识,你能求出一件上衣多少钱吗?(能)

指名板演,其他自练。

三、巩固练习

试一试

四、全课

师:求单位"1"的几分之几用乘法,已知一个数的几分之几是多少,求这个数用除法。

五、作业

分数与除法教案篇3

设计说明

分数除法问题的解决是本单元教学中的一个难点。为了突破这个难点,鼓励学生用方程解决分数除法问题,本节课的教学设计重视发挥学生的主体作用,让学生自己发现问题,亲自感受题中数量之间的关系,并在讨论、交流的学习活动中发现规律,从而让学生体会并归纳出用方程解决分数除法应用题的关键,即从题目的关键句中找出数量之间的相等关系,进而帮助学生学会用方程的方法解决有关分数除法的问题。

苏霍姆林斯基曾说过:“在人的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、成功者,而在儿童的精神世界中,这种需要特别强烈。”因此,本节课的教学设计给学生提供了充分的探究空间,先让学生独立思考,探究解题方法,再在学生独立探究的基础上,让学生小组合作讨论、交流,探究不同的解题方法,使学生对分数除法问题的数量关系及解法有清晰的理解,为进入更深层次的学习做好充分的准备。

课前准备

教师准备 ppt课件

教学过程

第1课时 分数除法(三)(1)

⊙创设情境,激趣导入

1.谈话激趣。

师:我们学校的春季运动会快要开始了,同学们喜欢开运动会吗?为什么喜欢开运动会呢?(学生思考后汇报)

师:大家都喜欢哪些项目?(学生举手,教师进行统计)

2.体会等量关系。

师:咱们班喜欢跑步的人真多呀,大约是全班人数的。你们能说一说这个信息中存在着什么样的等量关系吗?(学生思考后汇报:全班人数×=喜欢跑步的人数)

3.导入。

师:不仅我们学校这个时候开运动会,淘气所在的学校也准备开运动会,而且他们学校的学生都在积极地参加训练,争取在运动会上夺得冠军,为班级争光。

⊙合作交流,探究新知

问题。

师:(出示课件)这是他们训练时的情境,请同学们仔细观察,从这幅图中你能发现哪些数学信息?

(学生观察后汇报:有6名同学在跳绳,是操场上参加活动总人数的')

师:同学们观察得真仔细,那么你们能根据这些数学信息提出问题吗?(学生自由提问题)

设计意图:兴趣是学习的内动力,为了激发学生学习的兴趣,充分利用情境图,鼓励学生根据信息大胆地提出数学问题,不仅能使学生的思维活跃,热情高涨,还能使学生主动地投入到学习活动中来。

师:同学们提的问题都非常好,老师这里也有一个问题,你们愿意解答吗?(愿意)

出示问题:操场上参加活动的总人数是多少?说一说,你是怎么想的?

(学生先独立思考,然后与同桌说一说自己的想法)

2.解决问题。

(1)画图解决问题。

师:你们能说一说题中所表示的意义吗?试一试,能不能通过画图来解决这个问题呢?

(学生先交流题中所表示的意义,然后尝试通过画图解决问题并汇报)

预设

生:通过画图,我知道是6人,是3人,这样推算下来,操场上参加活动的总人数是27人。(如果学生采用其他画图方法来解决,教师也要给予肯定)

(2)用方程法解决问题。

①分析题中的等量关系。

师:你知道题中的关键句是哪句话吗?这句话蕴涵了什么样的等量关系?(学生交流,得出:参加活动总人数×=跳绳人数)

②自由解决问题。

师:根据这样的等量关系,你能列方程解决问题吗?快来试一试吧!(学生思考,独立解决问题,教师巡视指导)

③汇报。

师:同学们,谁能说说你是怎样解决这个问题的?

预设

生:我是根据“参加活动总人数×=跳绳人数”列方程解决问题的。

解:设操场上有x人参加活动。

分数与除法教案篇4

【教学内容】

?义务课程标准实验教科书数学》(人教版)六年制六年级上册第三单元《分数除法》的整理与复习

【单元分析】

本单元的概念比较多,尤其是比的初步认识这节中相似的概念较多,并且容易混淆,因此复习时要着重使学生弄清各个概念之间的联系和区别。计算是数学的基础,做题时掌握计算方法,培养良好的计算习惯。在做分数四则混合运算时,注意运算顺序,选择适合自己的方法计算,并通过交流了解其他算法。值得强调的是:掌握分数除法的计算方法,能正确进行计算,是学生必须掌握的一项技能,也是本单元的教学重点。但是,在计算过程中把除法转化为乘法,对学生来说是数学认识上的一次飞跃。另外,分数除法应用题历来是学生学习中的难点,它经常需要学生灵活应用数量之间的关系。。分析数量关系是解决实际问题的一个重要步骤。让学生知道分数应用题应该怎样想,学会思考的方法。还可以将它与比的应用进行对比,发现这两种题型是可以互相转化的。

【复习目标】

1、学生自主复习本单元的概念,进一步掌握本章所学的基本概念和计算法则,提高学生的计算能力和解题能力。引导进一步理解分数除法和比的意义、计算及应用。

2、通过梳理与沟通,让学生感悟相关知识的联系和区别。如分数乘除法解决问题,求比值、化简比,比和除法、分数之间的关系等。

3、培养学生良好的复习习惯。

【复习重点】

能比较熟练地进行分数除法、求比值以及化简比的计算;会正确地用方程或算术方法解答文字题。

【复习难点】

使学生进一步掌握用方程或算术方法解答已知一个数的几分之几是多少求这个数的应用题和稍复杂的分数除法应用题,提高学生解答分数应用题的能力.

【教具准备】

课件、练习纸

【复习过程】

一、回顾整理、汇报交流

师:昨天,老师布置同学们复习并整理分数除法这一单元,完成了吗?把你整理的内容先在小组内交流一下吧!

(生小组交流)

师:我选了几份有代表性的,想看看吗?

(学生汇报)

①简单列出本单元提纲 ②总结出个别重要的知识 ③虽然知识点零碎,但很全面

师:能把这么多零碎的知识全面的总结出来,看来你们很用心地对本单元进行了复习!可是,你们知道吗?复习不仅仅是回顾所学的知识,更重要的是找到知识间的联系,总结出学习方法,真正达到温故而知新!

二、练中梳理、沟通联系

师:请看(出示线段图) 什么图?仔细看,你能看明白什么?

生:b是单位“1”,分成了5份,a占了3份;a是b的 —理解的真好!

师:它可以用一个怎样的数量关系式来表示呢?

生:b× =a

师:你能把它改写成两个除法算式吗?

生:a÷b=

a÷ =b

师:为什么这样改?(积÷因数=因数)

所以说,分数除法的意义与整数除法相同,都是已知两个因数的积与一个因数,求另一个因数的运算。

师:想一想,两个数相除还可以用什么形式表示?

生:比。

师:什么是比?

师:那么a比b是 ?

生:a:b=

师: 是什么?(比值)

它还可以表示a与b的比是3:5

在a÷b= 这儿它是商

看来,比与分数以及除法之间,是有一定的联系的。有什么联系呢?

(生说,然后示课件)

有没有区别呢?(运算、数、关系)

师:既有密切的联系,又有本质的区别!

师:好了,下面看这儿 a÷ =b,如果a是2,你能算出b是多少吗?

(生计算)

师:说一说,怎么算的?

师:除以 ,算的时候变成了乘 ,依据什么?

分数除法的计算方法是什么?(生说)

乘除数的'倒数,这样,就把分数除法的计算转化成了乘法。(示转化)

师:想一想,像这样,a是2,b是 , a与b的比还是( )吗?

(生有认为是,有的认为不是)

师:究竟是不是呢?(算算看)

生:(① 2÷ =2÷ =2× = )→这是求比值的方法,得到比值还是

师:②看看这种方法可以吗?2: =(2×3):( ×3)=6:10=3:5=

↓ ↓

为什么前项×3 后项也×3 ?

这是通过化简比,得出结果还是3:5

问:化简比依据是什么?

对比:谁能说一说:求比值与化简比有什么不同?

生:求比值可以用前项÷后项,是一个商,结果可以是小数,分数或整数。

而化简比是根据比的性质,化成最简整数比,结果必须写成比的形式。

师:其实,求比值的计算中,常常会用到分数除法的计算方法。

三、解决问题,提升方法

1、根据线段图提简单的分数除法问题

师:如果a是六年级女生有300人 ,你能提出什么问题呢?

生:六年级总数?

师:可以吗?还可以怎么提?(示题)会做吗?

生:300÷

师 为什么用除法?题目的关键是哪句话?

生:女生是男生的

师:根据条件,可以写出什么数量关系式?

生:(男生)× =300

师:现在知道为什么用除法了吗?

师:还可以用什么方法?

生: 〤=300

2、稍复杂的分数除法问题

师:如果把条件换一换:女生比男生少 怎么做呢?

(生做,然后汇报交流)

师:对比这两题,你有什么发现?

生:男生是单位“1”,未知 。

师:求单位“1”可以用什么方法?

生:可以用方程,也可以用除法。

师:用除法做是根据了除法的意义,而用方程相当于顺着题目的意思列式,把分数除法问题转化成分数乘法法问题 ,这样就简单了。

3、比的应用

师:我把题目全换一换(示投影),变成了什么问题?

生:比的问题

师:能直接列式吗?

生:列式解答

师:把比转化成分数

问:为什么不用方程?

生:单位“1”知道,是800人。

师:这种按比分配的问题,也转化成了求“一个数的几分之几是多少”的分数乘法问题。

小结:这样把知识联系起来,问题就简单多了,应用起来也更灵活了!

四、综合练习,自我检测

师:经过我们再次整理,就把本单元这些散落的知识点穿在了一起,形成一个知识网。找到了联系,明确了方法,老师这儿还有一份检测题,有信心完成吗?

(分发练习纸,根据完成情况反馈交流)

(分析错因,大多是计算出错)

小结:看来掌握方法固然重要,细心认真的学习习惯也很重要!

五、课堂小结

师:咱们六年级的同学,面临对小学六年所学知识的复习。希望今天这节课对你们以后的学习能有所帮助,有所启发!

附练习题

一、 填空

1、8:10= =40÷( )=( )(填小数)

2、20千克:0.2吨的比值是( ),最简整数比是( )。

二、计算

÷2 ÷

×8÷ ( ÷

三、应用

一本书的 是80页,已看的与未看的页数比是9:1。已经看了多少页?

分数与除法教案篇5

分数乘、除法及比是本册教材的重点内容,为突出知识间的内在联系,帮助学生形成知识网络,本节复习课在教学设计上主要关注以下几个方面:

1.重视对分数乘、除法之间的关系及分数乘、除法计算方法的复习。

教学中,结合教材内容,进一步强调分数乘、除法之间的关系,加强计算方法的指导,使学生在进一步理解并掌握分数除法是分数乘法的逆运算的同时,计算能力得到提高。

2.重视对相关概念、性质及某些知识间相互关系的复习。

教学中,把比的相关概念、倒数的相关概念、比的性质以及比与分数、除法的关系等作为重要的复习内容,结合教材相关习题进行全面、系统地复习,使学生加深对概念的理解,同时将比与分数、除法联系起来。

3.重视对学生解决问题能力的培养。

教学中,把用分数乘、除法解决问题和用比解决实际问题作为重要的复习内容之一,结合教材习题,重点分析题中的数量关系,使学生通过对比练习,更好地掌握解决分数乘、除法问题以及比的有关问题的思路,提高学生分析问题、解决问题的能力。

相同点:题中的数量关系相同,解题思路相同。

不同点:①题表示单位“1”的量已知,用乘法计算。

②题表示单位“1”的量未知,列方程解答或用除法计算。

(3)总结解决分数乘、除法问题的方法和解题关键。

①方法:表示单位“1”的量已知,求单位“1”的几分之几是多少,用乘法计算;表示单位“1”的量未知,已知一个数的几分之几是多少,求这个数,列方程解答或用除法计算。

②关键:找准表示单位“1”的量。

设计意图:结合教材习题,复习画线段图分析问题的方法,在对比中使学生进一步理解并掌握解决分数乘、除法问题的方法和解题关键,提高学生解决问题的.能力。

⊙巩固练习

1.完成教材115页6题。

地球上海洋面积是36000万平方千米,占地球总面积的。地球总面积是多少万平方千米?

2.完成教材116页8题。

(1)五年级同学收集了165个易拉罐,六年级同学比五年级多收集了。六年级收集了多少个易拉罐?

(2)四年级比六年级少收集了,四年级收集了多少个易拉罐?

3.完成教材116页10题。

一列火车的速度是180千米/时。一辆小汽车的速度是这列火车的,是一架喷气式飞机的。这架喷气式飞机的速度是多少?

4.完成教材116页11题。

(1)用84 cm长的铁丝围成一个长方形,这个长方形的长与宽的比是2∶1。这个长方形的长与宽分别是多少厘米?

84÷2=42(cm) 长:42×=28(cm)

宽:42×=14(cm)

(2)用84 cm长的铁丝围成一个三角形,这个三角形三条边长度的比是3∶4∶5。三条边各是多少厘米?

[84÷(3+4+5)=7(cm) 7×3=21(cm)

7×4=28(cm) 7×5=35(cm)]

⊙课堂总结

通过本节课的复习,你有什么收获?

分数与除法教案篇6

【学习目标】

1、能利用计算法则,正确、迅速地进行分数除法的计算。

2、培养自己的语言表达能力和抽象概括能力。

3、养成良好的计算习惯。

【学习重难点】

1、重点是抽象概括出分数除法的计算法则。

2、难点是利用法则正确、迅速地进行计算,并能解决一些实际问题。

【学习过程】

一、复习

1、列式,说清数量关系。

小明2小时走了6 km,平均每小时走多少千米?____________________________

速度=路程÷时间

2、计算:151×4 ×3 ×2 ×6 971215

8352÷4 ÷3 ÷2 ÷6 9765

二、探索新知

1、阅读例题3图及题目,要“比较谁走的快”可以比较他们的什么?如何列式?

2、探究2÷

(1)“2的算法 32小时走了2 km,估一估1小时走多少千米? 3

(2) 动手画线段图表示已知条件与问题的关系。

1小时走的路程,再将线段平均分成3份,其中2份

表示的就是2小时走的路程。 3

(3) 结合线段图,思考:要求小明的速度,第一步可以先算什么?第二步再算什么?

2要怎样计算?它把除法转化成什么?怎样转化? 3

55553、计算例3第二个算式÷,想一想÷可以转化成什么? 612612(4) 结合解题思路,思考2÷

4、通过上面的2道计算题,你发现了什么?你会用自己的方式表示下你发现的'规律吗?

______________________________________________________________

三、知识应用:独立完成p31“做一做”的第1、2题。(组长检查核对,提出质疑。)

四、层级训练:巩固训练:练习八第4、5、6题;拓展提高:练习八第7、8、9题。

五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。) 自我展示台:(写出你的发现或见解)

分数与除法教案篇7

教学目标:

1、理解分数除以整数的意义,掌握分数除以整数的计算方法,并能正确计算。

2、通过实践活动和自主探究,培养学生动手能力及发现问题、解决问题的能力。

3、通过一系列“自主探究----得出结论”的过程,体验其中的成就感,增强学生学习数学的自信心。

教学重点:

理解分数除法的意义,掌握分数除以整数的计算方法。

教学难点:

分数除以整数计算法则的推导过程。

教学准备:

多媒体课件、长方形纸等。

教学过程:

一、旧知复习,蕴伏铺垫

复习时我安排了两道练习,引发学生记忆的再现,为学生选择原有知识中的有效的信息做好铺垫。

1、展示问题:

(1)什么是倒数?

(2)你能举出几对倒数的例子吗?

(3)如何求一个数的倒数?

2、展示多媒体:笑笑和淘气去买白糖。

问题1:他们每人买了两袋白糖,一共买了多少袋白糖?

问题2:这些白糖一共重2千克,每袋白糖有多重?

问题3:如果笑笑家15天吃完一袋白糖,那么平均每天吃多少千克?

二、创设情境,理解意义

展示多媒体:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?

1、利用准备好的纸,先把纸平均分成7份,再涂出其中的4份,然后再将这4份平均分成2份,将其中1份涂色,最后看看涂上色的这部分占整张纸的几分之几。

2、汇报

三、大胆猜想

学生通过操作,明白2/7是怎样得到的。那么到底应该怎样计算分数除法呢?让学生大胆猜想分数除法的计算方法。学生根据刚才的推理,很容易得出“分母不变,被除数的分子除以整数得到商的分子”的计算方法。

四、再次探究

1、学生很快发现有些算式是无法用以上结论计算出来的,如4/7÷3,分子4除以3是除不尽的。

2、让学生动手分一分、涂一涂,然后再让他们进行小组交流。

3、得出分数除法的计算方法:除以一个整数(零除外)等于乘这个整数的倒数。

板书: 分数除法(二)

除以一个整数(零除外)等于乘这个整数的倒数。

分数与除法教案篇8

【学习目标】

1、掌握分数四则混合运算的运算顺序,能较熟练地进行计算。

2、理解整数四则混合运算定律在分数四则运算中同样适用,并能进行简便运算。

3、通过练习,培养计算能力及初步的逻辑思维能力。

【学习重难点】

1、重点是确定运算顺序再进行计算。

2、难点是明确混合运算的顺序。

【学习过程】

一、复习

1、复习整数混合运算的运算顺序

(1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;

如果既有加减法又有乘除法,应该先算乘除法,后算加减法。

(2)在一个有小括号的算式里,应该先算小括号里面的',后算小括号外面的。

(3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面

的,最后算中括号外面的。

2、整数四则混合运算定律在分数四则运算中同样适用。

3、说出下面各题的运算顺序。

(1) 428+63÷9―17×5 (2) 1.8+1.5÷4―3×0.4

(3) 3.2÷[(1.6+0.7)×2.5] (4) [7+(5.78—3.12)]×(41.2―39)

二、探索新知

1、阅读例4题目,明确已知条件及问题,尝试说说自己的解题思路。

a、可以从条件出发思考,根据彩带长8m ,每朵花用2m 彩带,可以先3

算出一共做了多少朵花。

b、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。

2、列出综合算式,想一想它的运算顺序,再独立计算。

______________________________________________________________

3、独立完成p34 “做一做”第1、2题

4、明确整数四则混合运算定律在分数四则运算中同样适用,正确复述四则混合运算定律。

三、知识应用独立完成练习九第1题,组长检查核对,提出质疑。

四、层级训练:巩固训练:完成练习九第2—6题;拓展提高:练习九第7---10题。

(1)第2题:要注意6楼楼板到地面的高度实际上只有5层楼的高度。 (2)第7题:“60瓦”与计算无关。 (3)第10题:最后得数与原数相同,原因是231、的倒数与的积正好是1。 342

五、总结梳理:回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。) 自我展示台:(把你个性化的解答或创新思路写出来吧!)

《分数与除法教案推荐8篇.doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

相关文章

最新文章

分类

关闭